+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ | | | | | | | | | | | | | | | | | | | | | +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ 図−6.1 図−6.2もう一つの考えは,「Aを中心にして,半径xの円を描く」という考え方を使う方法で ある。この場合,次のような手順となる。
+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ | | | | | | | | | | | | | | | | | | | | | +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ 図−6.3 「円」→「中心と半径」 図−6.2 中心を決める +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ | | | | | | | | | | | | | | | | | | | | | +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ 図−6.4 「新しい変数」を選択 図−6.5 数値の入力 すると,「数値の変化」を使えば,半径が変わる円を作ることが可能になる。 +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ | | | | | | | | | | | | | | | | | | | | | +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ 図−6.6 「数値の変化」を選択 図−6.6 変化の過程
という考え方が,一番自然である。
「両方とも,半径x」という考え方を,ここでは,「同じ数値を使って」と考え直すこ
とによって,次のように作図を続けることができる。
+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ | | | | | | | | | | | | | | | | | | | | | +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ 図−6.7 「円」→「中心と半径」 図−6.8 中心の選択 +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ | | | | | | | | | | | | | | | | | | | | | +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ 図−6.9 「今までの数値」の選択 図−6.10数値の選択 すると,同じ数値を使っているので,次のような変化となる。 +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ | | | | | | | | | | | | | | | | | | | | | +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ 図−6.11「数値の変化」を選択 図−6.12変化の過程 さらに,交点の軌跡を求めると,次のようになる。 +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ | | | | | | | | | | | | | | | | | | | | | +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ 図−6.13「点」→「2円の交点」 図−6.14「軌跡の設定」→「点」→・・ +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ | | | | | | | | | | | | | | | | | | | | | +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ 図−6.15「数値の変化」を選択 図−6.16軌跡
となる点の集合である。これを条件を満たす点の集合として作図する方法もあるが,
と読み変えれば,たとえば 一定=10 の場合,
PAの条件:Aを中心として,半径 x の円を作る PBの条件:Bを中心として,半径10−xの円を作る。として,この2円の交点の軌跡として作図することが可能になる。
+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ | | | | | | | | | | | | | | | | | | | | | +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+ 図−6.15「数値の変化」を選択 図−6.16軌跡
(1) 2点A,Bからの距離の差が一定 (例:PA−PB=10) (2) 2点A,Bからの距離の比が一定 (例:PA=2PB)